Tag Archives: motion bearing

China high quality 3D Printer Linear Motion Sliding Bearing Lm8uu Lm10uu Lm12uu Lm13uu bearing assembly

Product Description

Linear Motion Bearings Main Products:
 Linear motion ball bearing ,Flanged linear motion ball bearing ,Linear motion ball bearing slide units,Support rail units,Shaft sport,Shafts ,etc. The main type as belows :
Application: 1. Automatic controlling machine
2. Semi-conductor industry
3. General industry machinery
4. Medical equipment
5. Solar energy equipment
6. Machine tool
7. Parking system
8. High-speed rail and aviation transportation equipment, etc
Product Description
Linear Motion Ball Bearing:

  /* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: High Precision/Rigidity
Function: Super
Flange Shape: Lm/Lme
Shape: Standard
Series: Lm/Lme
Material: Bearing Steel
Samples:
US$ 2.6/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

sliding bearing

Contribution of Sliding Bearings to Agricultural Machinery and Equipment

Sliding bearings play a crucial role in enhancing the functionality and efficiency of various agricultural machinery and equipment. Here’s how they contribute:

Smooth Movement: Sliding bearings provide smooth and low-friction movement in agricultural machinery, ensuring efficient operation of components like pivots, linkages, and joints.

Load Distribution: Sliding bearings distribute loads evenly across surfaces, reducing stress on components and extending the lifespan of agricultural equipment.

Durability: Sliding bearings are designed to withstand harsh conditions commonly encountered in agriculture, such as exposure to dirt, debris, and moisture.

Low Maintenance: Sliding bearings require minimal maintenance due to their self-lubricating properties, reducing downtime and operational costs.

Vibration Dampening: Sliding bearings help dampen vibrations in agricultural machinery, improving operator comfort and reducing wear on components.

Enhanced Precision: Sliding bearings ensure precise movement in equipment like planting and harvesting machinery, contributing to accurate and consistent operations.

Versatility: Sliding bearings are used in a wide range of agricultural applications, including tractors, combines, plows, irrigation systems, and more.

Cost Efficiency: Sliding bearings provide a cost-effective solution for agricultural machinery, offering long service life and reducing the need for frequent replacements.

Reliability: Sliding bearings offer reliable performance even in challenging agricultural environments, contributing to the overall reliability of the equipment.

Environmental Adaptability: Sliding bearings can handle varying weather conditions and exposure to agricultural chemicals without compromising performance.

Overall, sliding bearings play a vital role in ensuring the smooth operation, durability, and performance of agricultural machinery and equipment, contributing to increased productivity and reduced maintenance requirements in the agriculture sector.

sliding bearing

Managing Friction and Wear in Sliding Bearings

Friction and wear are common challenges in sliding bearings that can lead to reduced performance and premature failure. Here’s a detailed look at these challenges and some solutions to manage them:

Challenges:

  • Friction: High friction can lead to energy loss, increased heat generation, and accelerated wear.
  • Wear: Continuous contact between sliding surfaces can result in material removal and surface degradation over time.

Solutions:

  • Lubrication: Proper lubrication is crucial to reduce friction and wear. Lubricants create a protective film between sliding surfaces, minimizing direct contact and promoting smooth movement.
  • Self-Lubricating Bearings: Bearings made from self-lubricating materials, such as polymers containing solid lubricants, can offer continuous lubrication without external intervention.
  • Bearing Design: Optimized bearing designs, such as incorporating grooves or pockets for lubricant retention, can enhance lubrication efficiency and reduce friction.
  • Maintenance: Regular maintenance and lubricant replenishment help ensure consistent lubrication levels and prevent excessive wear.
  • Material Selection: Choosing materials with low friction coefficients and high wear resistance can minimize friction and extend bearing life.
  • Surface Treatments: Coatings, such as PTFE or DLC (diamond-like carbon), can be applied to bearing surfaces to reduce friction and enhance wear resistance.
  • Clearance Adjustment: Proper clearance between bearing components can reduce friction and prevent excessive loading.

By implementing effective lubrication strategies, choosing appropriate materials, and employing suitable design practices, the challenges of friction and wear in sliding bearings can be effectively managed, leading to improved performance and longer bearing life.

sliding bearing

Impact of Proper Lubrication on Sliding Bearings

Proper lubrication plays a critical role in the performance and longevity of sliding bearings. Here’s how it affects their operation:

  • Reduced Friction and Wear: Lubrication forms a thin film between the sliding surfaces of the bearing, reducing direct metal-to-metal contact. This minimizes friction and wear, which can significantly extend the bearing’s lifespan.
  • Heat Dissipation: Lubricants help dissipate heat generated during operation by carrying away excess heat from the friction zones. This prevents overheating and potential damage to the bearing and surrounding components.
  • Corrosion Prevention: Lubricants provide a protective barrier against moisture and corrosive substances, preventing the formation of rust and corrosion on the bearing surfaces.
  • Sealing Effect: Proper lubrication can help create a sealing effect that prevents contaminants from entering the bearing, maintaining a clean and efficient operating environment.
  • Noise and Vibration Reduction: Adequate lubrication helps dampen noise and reduce vibration caused by friction between bearing surfaces. This contributes to quieter and smoother operation.
  • Enhanced Load Distribution: Lubrication ensures even load distribution across the bearing surfaces, preventing localized wear and extending the bearing’s overall life.
  • Stability and Performance: Proper lubrication maintains consistent performance and stability by minimizing variations in friction and reducing the risk of sudden failures.
  • Seizure Prevention: Lubricants prevent sliding surfaces from seizing or sticking together, even during periods of prolonged inactivity.
  • Optimized Efficiency: Well-lubricated bearings experience less energy loss due to friction, resulting in improved overall efficiency of the machinery.

Choosing the right lubricant type, viscosity, and lubrication interval is crucial to ensuring the optimal performance and durability of sliding bearings. Regular maintenance and monitoring of lubrication levels are essential to prevent issues and extend the bearing’s service life.

China high quality 3D Printer Linear Motion Sliding Bearing Lm8uu Lm10uu Lm12uu Lm13uu   bearing assemblyChina high quality 3D Printer Linear Motion Sliding Bearing Lm8uu Lm10uu Lm12uu Lm13uu   bearing assembly
editor by CX 2024-02-13

China Hot selling 1688 Hotsale Manufacture Smooth Surface Corrosio Resistance Linear Motion Sliding Bearing Aluminium Block Scs6uu Scs6luu Linear Shaft Linear Slide Bearing with Good quality

Product Description

1688 Hotsale Manufacture Smooth Surface Corrosio Resistance Linear Motion Sliding Bearing Aluminium Block Scs6uu Scs6luu Linear Shaft Linear Slide Bearing

Cylindrical linear CZPT rail introduction

SBR/TBR cylindrical linear CZPT rail consists of a rail support, an axis(rail), and number of blocks. they are supplied as a unit or as respective components and. all components are standardized to be fully interchangeable.

linear CZPT rail tbr/SBR series with smooth serface, low friction, low noise level, they are widely used in linear motion system. for example, punch, tool grinder, automatic cutting machine, printer, card sorting machine, food packaging machine, other sliding parts on industrial machines.

Our function:
1.highest quality and the most competitive price—–we have our own factory, large production, near the port. ensure cheap price and guaranteed quality.
2. professional—we can almost kinds of linear CZPT rail. diameter 10-60mm, the length can be produced according to your requirement.
3.delivery fast—–goods will be shipped within 1 to 5 working days based on order quantity.
4.best service—–answering emails or solving questions timely. delivery and update information on time. trust, good quality and service are the basis of long-term business.

SBR..UU

SBR16UU,SBR20UU,SBR25UU,SBR30UU,SBR35UU,SBR40UU,SBR50UU

SBR..LUU

SBR16LUU,SBR20LUU,SBR25LUU,SBR30LUU,SBR40LUU

TBR..UU

TBR16UU,TBR20UU,TBR25UU,TBR30UU

TBR..LUU

TBR16LUU,TBR20LUU,TBR25LUU,TBR30LUU

SCS..UU

SCS8,SCS10,SCS12,SCS13,SCS16,SCS20,SCS25,SCS30,SCS35,SCS40, SCS50

SCS..LUU

SCS8,SCS10,SCS12,SCS13,SCS16,SCS20,SCS25,SCS30,SCS35,SCS40, SCS50

SC..JUU

SCJ10,SCJ12.SCJ13,SCJ16,SCJ20,SCJ25,SCJ30,SCJ35,SCJ40, SCJ50

SCE

SCE8,SCE10,SCE12,SCE13,SCE16,SCE20,SCE25,SCE30,SCE35,SCE40, SCE50

 

PACKAGE

Our packaging is also very variable, the purpose is to meet the needs of different customers.The commonly used packages are as 
follows:
1.Industrial  package
2.Single box+carton+pallet
3.Plastic bag+Wooden box packing
4.According to customers requirements

Factory Introduction

Our factory is committed to all areas to achieve “zero defect” quality objectives of quality and safety throughout all phases of

design to manufacture consistent,strong quality management system to ensure to the maximum extent from the product. This is

important prerequisite to establish trust relationships with customers.

Most modern precision product manufacturing process is a great significance major contribution to the “zero defect

manufacturing”.”BXY” is our brand,which is very famous in the industry and coutomers.

HangZhou Yi CZPT International Trade Co.,Ltd  is based in ZheJiang (CHINA) since 2011 and is 1 of the biggest authorized

manufactures and exporters of bearings and linear shaft products. We’ve been dedicated to provide all types of hiigh quality

bearings and linear shafts to OEM. Up to now, we have exported our goods to Italy, Brazil, Argentina, Poland, India, Pakistan,

Bangladesh,Thailand,Indonesia, South Korea, Iran, South Africa,etc. 
 
First class service, efficient delivery methods, the most competitive quality-price ratio, we dedicated to provide you quality brand

bearings. Sincerely welcome new and old customers visit and build cooperation.
                   
Why Choose XINYAN
NO.1   
We are factory directly.

NO.2   
We provide our customers the most Comprehensive service and we’ll do our best to deal with problems our customers encountered to ensure our customers SATISFACTION.

NO.3   
The high quality of our products means that it has long life, high speed, low noise, low vibration and low friction.

NO.4
Be honesty, be professional is our faith; good attitude, timely response, quick delivery, consideration of every detail is our working style.

NO.5 
Manufactured by ourselves, enough storage space, enough inventory, high producing efficiency we possess, the most favorable price we offer to our customers makes sure every deal have a happy end.

FAQ

Q1: How many the MOQ of your company?
A: Our company MOQ is 1pcs.

Q2: Could you accept OEM and customize?
A:YES, we can customize for you according to sample or drawing.

Q3: Could you supply sample for free?
A: Yes, we can supply sample for free, but need our customer afford freight.

Q4 : Does your factory have CE?
A: Yes, we have ISO 9001:2008, and SASO. If you want other CE, we can do for you.

Q5: Is it your company is factory or Trade Company?
A: We have our own factory; our type is factory + trade.

Q6:  What time the guarantee of your bearing quality guarantee period?
A: 6 months ,Customer need supply photos and send bearing back.

Q7: Could you tell me the payment term of your company can accept?
A: T/T, Western Union, PayPal, T/T, L/C.

Q8: Could you tell me the delivery time of your goods?
A: 7-15 days , mostly base on your order quantity.
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Feature: Low Temperature, Corrosion Resistant, High Temperature, High Speed
Function: Super
Flange Shape: Circular
Shape: Straight
Series: Scs
Material: Alloy
Samples:
US$ 0/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

sliding bearing

Considerations for Selecting Appropriate Sliding Bearings

Choosing the right type and size of sliding bearing is crucial for ensuring optimal performance and longevity in various applications. Here are key considerations to keep in mind:

Load and Application: Determine the specific load and application requirements. Different sliding bearings are designed to handle varying loads, speeds, and operating conditions. Consider whether the bearing will experience radial, axial, or combined loads, as well as the expected range of motion.

Material Compatibility: Select materials that are compatible with the operating environment. Consider factors such as corrosion resistance, temperature tolerance, and exposure to chemicals or contaminants. Common bearing materials include bronze, steel, and self-lubricating polymers.

Lubrication: Proper lubrication is essential for reducing friction and wear in sliding bearings. Choose a lubrication method that suits the application, whether it’s grease, oil, or self-lubricating materials. Some sliding bearings are designed for maintenance-free operation.

Design and Configuration: Determine the appropriate bearing design, such as bushings, thrust washers, or linear guides. Consider the bearing’s dimensions, including inner and outer diameter, length, and width. The bearing’s configuration should match the available space and mounting requirements.

Load Distribution: Ensure that the selected sliding bearing can evenly distribute the applied load across its surface. This helps prevent premature wear and ensures the bearing’s longevity. Consider the bearing’s load capacity and how it aligns with the actual load demands.

Friction and Wear: Evaluate the bearing’s coefficient of friction and wear characteristics. Lower friction and wear rates contribute to longer bearing life and improved efficiency. Consider whether the bearing requires initial running-in to reach optimal performance.

Maintenance and Service Life: Consider the maintenance requirements and expected service life of the sliding bearing. Some applications may benefit from bearings with extended maintenance intervals or self-lubricating properties, while others may prioritize easy replacement.

Cost-Efficiency: Balancing performance with cost is essential. While high-performance materials and features can enhance bearing performance, they may also increase the upfront cost. Choose a solution that aligns with your budget and long-term operational goals.

Environmental Conditions: Factor in the environmental conditions the bearing will operate in. For example, marine environments may require bearings with exceptional corrosion resistance, while high-temperature applications demand materials with thermal stability.

Supplier Expertise: Partner with reputable suppliers who offer technical expertise and a range of sliding bearing solutions. Suppliers with a strong track record can provide guidance in selecting the most suitable bearing for your specific application.

By carefully considering these factors, you can confidently choose the appropriate type and size of sliding bearing that meets your application’s requirements and ensures optimal performance and reliability.

sliding bearing

Benefits of Sliding Bearings in Low-Speed and Heavy-Load Applications

Sliding bearings offer significant advantages in low-speed and heavy-load applications, where their unique characteristics provide optimal performance. Some examples of scenarios where sliding bearings benefit such applications include:

  • Mining Equipment: Sliding bearings are used in mining machinery such as crushers, mills, and conveyor systems. These applications often involve heavy loads and low speeds, where sliding bearings can provide robust support and reliable operation.
  • Steel Mills: In steel production, sliding bearings are utilized in rolling mills and continuous casting machines. These operations require handling heavy loads and slow rotation speeds, making sliding bearings suitable for providing the necessary support.
  • Hydraulic Systems: Sliding bearings are used in hydraulic cylinders, where slow and controlled movements are required for applications like construction machinery, material handling equipment, and heavy-duty presses.
  • Cranes and Lifts: Sliding bearings are employed in the construction of cranes, elevators, and lifting platforms. These applications involve lifting and lowering heavy loads at controlled speeds, making sliding bearings crucial for smooth and reliable motion.
  • Wind Turbines: Sliding bearings are used in the yaw and pitch systems of wind turbines. These systems need to handle the substantial weight of the turbine blades and operate at low speeds to optimize energy generation.

In these scenarios and more, sliding bearings provide the necessary support, stability, and durability required for low-speed and heavy-load applications.

sliding bearing

Considerations for Selecting Sliding Bearings

When choosing a sliding bearing for a specific application, several key factors should be taken into consideration:

  • Load Capacity: Determine the maximum load the bearing will need to support. This includes both radial and axial loads, as well as any dynamic or static loads.
  • Operating Conditions: Consider the operating environment, including temperature, humidity, and exposure to chemicals or contaminants. Different materials and coatings may be required for harsh conditions.
  • Lubrication: Choose the appropriate lubrication method based on the application. Consider factors such as the frequency of lubrication, the availability of lubrication points, and the compatibility of lubricants with the bearing material.
  • Speed and Motion: Evaluate the speed and type of motion the bearing will experience. Higher speeds may require special considerations for heat dissipation and lubrication.
  • Alignment and Misalignment: Determine if the bearing will need to accommodate misalignment between the shaft and the bearing housing. Some applications may require self-aligning or spherical bearings.
  • Wear Resistance: Choose a bearing material that offers good wear resistance to prevent premature wear and extend the bearing’s lifespan.
  • Noise and Vibration: Consider the impact of noise and vibration on the application. Bearings with proper damping properties can help reduce noise and vibration levels.
  • Maintenance Requirements: Assess the ease of maintenance, including lubrication intervals, accessibility of lubrication points, and the need for regular inspections.
  • Cost and Availability: Compare the cost of the bearing with its expected performance and lifespan. Also, ensure that the chosen bearing type and size are readily available.
  • Application-Specific Considerations: Some applications may have unique requirements, such as corrosion resistance, electrical insulation, or compatibility with food-grade standards.

By carefully considering these factors, you can select a sliding bearing that meets the specific needs of your application, ensuring reliable performance and longevity.

China Hot selling 1688 Hotsale Manufacture Smooth Surface Corrosio Resistance Linear Motion Sliding Bearing Aluminium Block Scs6uu Scs6luu Linear Shaft Linear Slide Bearing   with Good qualityChina Hot selling 1688 Hotsale Manufacture Smooth Surface Corrosio Resistance Linear Motion Sliding Bearing Aluminium Block Scs6uu Scs6luu Linear Shaft Linear Slide Bearing   with Good quality
editor by CX 2024-02-12

China Good quality Linear Motion Slide Sliding Bearing Lmb16uu Lmb16luu Lm16 Outlet Linear Motion Ball Bearing bearing air

Product Description

Linear Motion Slide Sliding Bearing Lmb16uu Lmb16luu Lm16 Outlet linear motion ball bearing 

Product Description

Linear bearings are used with hardened linear drive shafts. A system for infinite linear motion. Because the load ball and the quenching drive shaft are in point contact, the allowable load is small, but when moving in a straight line, the friction resistance is the smallest, the precision is high, and the movement is fast.

(1) Standard type, clearance adjustment type linear bearing, open type linear bearing, extended type linear bearing, general type linear bearing

(2) Flanged linear bearings can be divided into: round flange type, square flange type, oval flange type, CZPT round flange type, CZPT square flange type, CZPT oval flange type, and elongated round flange type.

Linear bearings are more and more widely used in electronic equipment, food machinery, packaging machinery, medical machinery, printing machinery, textile machinery, machinery, instruments, robots, tool machinery, CNC machine tools, automobiles and digital 3D coordinate measuring equipment and other precision equipment or special machinery industry.
 

Bearing NO.

Inner diameter (mm)

External diameter (mm)

Length (mm)

LM3 UU

3

7

10

LM4 UU

4

8

12

LM5 UU

5

10

15

LM6 UU

6

12

19

LM8 SUU

8

15

17

LM8 UU

8

15

24

LM10 UU

10

19

29

LM12 UU

12

21

30

LM13 UU

13

23

32

LM16 UU

16

28

37

LM20 UU

20

32

42

LM25 UU

25

40

59

LM30 UU

30

45

64

LM35 UU

35

52

70

LM40 UU

40

60

80

LM50 UU

50

80

100

LM60 UU

60

90

110

LM80 UU

80

120

140

LB81625

8

16

25

Detailed Photos

Certifications

Packaging & Shipping

Company Profile

 

Feature: Vacuum, Magnetically, High Temperature
Function: Super
Flange Shape: Square
Shape: Open
Series: LM
Material: Gcr15, Ss, High Carbon Steel
Samples:
US$ 0.1/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

sliding bearing

Improvement of Heavy Machinery Operation with Sliding Bearings

Sliding bearings play a crucial role in enhancing the operation of heavy machinery, such as mining equipment. Here’s how they contribute:

Reduced Friction and Wear:

Sliding bearings are designed to minimize friction between moving parts. In heavy machinery, where components are subjected to substantial loads and harsh conditions, reducing friction is essential to prevent premature wear and damage. Sliding bearings help distribute loads evenly and provide a smooth surface for components to slide against, reducing the risk of friction-induced failures.

Increased Durability:

The robust construction and materials used in sliding bearings make them well-suited for heavy machinery applications. They can withstand the heavy loads, impacts, and vibrations commonly encountered in mining equipment. Their durability contributes to the overall reliability and longevity of the machinery.

Improved Efficiency:

Efficiency is critical in heavy machinery to maximize productivity while minimizing energy consumption. Sliding bearings contribute to improved efficiency by reducing energy losses due to friction. With lower friction, machinery components can move more freely, requiring less energy to overcome resistance.

Resistance to Contaminants:

Mining environments are often filled with dust, dirt, and debris that can infiltrate machinery components. Sliding bearings are designed to operate effectively even in contaminated conditions. Their design and materials help prevent the intrusion of contaminants, reducing the risk of premature wear and component failure.

Enhanced Load Distribution:

Heavy machinery, especially in mining, experiences dynamic and uneven loads. Sliding bearings help distribute these loads evenly across surfaces, preventing localized stress concentrations. This load distribution contributes to the machinery’s overall structural integrity and minimizes the risk of catastrophic failures.

In conclusion, sliding bearings are integral to the efficient and reliable operation of heavy machinery in industries like mining. Their ability to reduce friction, enhance durability, improve efficiency, resist contaminants, and distribute loads makes them invaluable components for ensuring the smooth functioning of mining equipment.

sliding bearing

Enhancing Efficiency of Marine Propulsion Systems with Sliding Bearings

Sliding bearings play a crucial role in enhancing the efficiency of marine propulsion systems and various ship components. Here’s how sliding bearings contribute to the efficiency of maritime applications:

Reduced Friction: Sliding bearings are designed to minimize friction between moving parts. In marine propulsion systems, such as propeller shafts and stern tubes, reduced friction results in less energy loss and improved fuel efficiency.

Smooth Operation: Sliding bearings provide smooth and controlled movement of rotating or linear components. In marine applications, this smooth operation translates to improved maneuverability, reduced vibrations, and enhanced overall performance.

Load Distribution: Sliding bearings distribute loads evenly across bearing surfaces. This even distribution helps prevent localized wear and reduces the risk of premature failure, ensuring reliable operation of ship components.

Resistance to Harsh Environments: Marine environments expose equipment to corrosive saltwater, extreme temperatures, and harsh weather conditions. Sliding bearings are often designed with materials and coatings that offer corrosion resistance and durability, ensuring longevity even in challenging maritime settings.

Enhanced Lubrication: Lubrication is vital for reducing wear and friction in sliding bearings. Many marine applications use advanced lubrication systems that optimize the distribution of lubricants, further reducing friction and improving efficiency.

Space Efficiency: Sliding bearings are compact and require minimal space, making them suitable for marine systems where space is limited. This efficient use of space is particularly important in ship design and layout.

Customization for Specific Needs: Sliding bearings can be tailored to meet the specific requirements of different ship components. This customization ensures that bearings are optimized for their intended functions, further contributing to efficiency.

Reduced Maintenance: Properly designed sliding bearings require less maintenance compared to some other types of bearings. This reduced maintenance need translates to less downtime and increased operational efficiency for marine vessels.

Optimized Performance: Overall, the efficient and reliable performance of sliding bearings in marine propulsion systems and ship components leads to improved energy efficiency, reduced operational costs, and extended service life of the equipment.

By incorporating sliding bearings into marine applications, shipbuilders and operators can achieve enhanced efficiency, reliability, and sustainability in their operations.

sliding bearing

Design Principles and Functions of Sliding Bearings

Sliding bearings, also known as plain bearings or journal bearings, operate on the principle of providing a low-friction interface between two moving surfaces. The design of sliding bearings is based on creating a film of lubrication between the bearing surface and the shaft or journal it supports. This film of lubrication separates the two surfaces and minimizes direct metal-to-metal contact, reducing friction and wear.

The main components and design principles of sliding bearings include:

  • Bearing Material: Sliding bearings are typically made from materials with good wear resistance and self-lubricating properties, such as bronze, brass, or various polymers. These materials help reduce friction and prevent excessive wear.
  • Lubrication: Lubrication is crucial for the proper functioning of sliding bearings. It can be provided by an external lubricant, solid lubricants embedded in the bearing material, or a combination of both. The lubrication forms a protective layer that reduces direct contact and minimizes friction.
  • Clearance: Sliding bearings are designed with a specific clearance between the bearing and the shaft to accommodate the lubricating film and allow for proper movement. This clearance prevents seizing and binding of the bearing.
  • Load Distribution: The design of sliding bearings ensures that the load is distributed over a larger surface area to prevent excessive stress on any single point. This feature is essential for handling heavy loads in industrial applications.
  • Alignment and Misalignment: Sliding bearings can tolerate small misalignments between the bearing and the shaft. This flexibility allows them to accommodate minor shifts caused by thermal expansion, vibration, or other factors.
  • Heat Dissipation: Sliding bearings can generate frictional heat during operation. Proper design includes features to facilitate heat dissipation and prevent overheating that could lead to premature wear.
  • Application-Specific Design: The design of sliding bearings can vary based on the specific application requirements, including load capacity, speed, operating temperature, and environmental conditions.

The functions of sliding bearings include providing support to rotating or sliding shafts, reducing friction, absorbing and distributing loads, allowing for misalignment, and offering smooth movement even in dirty or contaminated environments. Sliding bearings are commonly used in various industrial machinery and equipment, including engines, pumps, conveyors, and manufacturing equipment.

Overall, the design principles and functions of sliding bearings make them suitable for applications where low friction, durability, load-bearing capacity, and adaptability to varying conditions are essential.

China Good quality Linear Motion Slide Sliding Bearing Lmb16uu Lmb16luu Lm16 Outlet Linear Motion Ball Bearing   bearing airChina Good quality Linear Motion Slide Sliding Bearing Lmb16uu Lmb16luu Lm16 Outlet Linear Motion Ball Bearing   bearing air
editor by CX 2023-11-16

China Japan LMB20 Linear Motion Bush Ball Bearing LMB20UU deep groove ball bearing

Kind: LINEAR
Applicable Industries: Advertising Company, Developing Material Retailers, Building works , Energy & Mining, Farms, Foods & Beverage Manufacturing facility, Foodstuff & Beverage Retailers, Food Shop, Garment Retailers, Residence Use, Resorts, Machinery Fix Shops, Manufacturing Plant, Printing Outlets, Cafe, Retail, Other
Precision Ranking: P0 P6 P5 p4 p2
Model Amount: Lmb20uu
venture: Linear Bearing
Amount of row: Solitary Row
Inventory: Rich
Materials::: Chrome steel,Gcr15
Lubrication::: Grease & Oil
Guarantee::: 50000km or 1 yr
Service::: OEM & ODM
Package deal::: bundle+carton+pallet
Payment Expression::: T/T, WU, PayPal, L/C
Function: Extended Life
Packaging Details: Japan LMB20 Linear Movement Bush Ball Bearing LMB20UUA. Plastic tubes Pack + Carton + Wooden Pallet B. Roll Pack + Carton + Picket Pallet C. Person Box +Plastic bag+ Carton + Wooden PalletD. Kraft bag + Carton + Wooden Pallet E. Custom made Pack – Numerous types of custom packaging

Japan LMB20 Linear Motion Bush Ball Bearing LMB20UU

Japan LMB20 Linear Motion Bush Ball Bearing LMB20UU
Brand Linear Bearing
Quality commonISO9001:2000 common
SampleAvailable
Delivery day Normally prepared merchandise and stock
Shipping DHL, TNT, Fedex, UPS, Ems or by sea
Payment phrasesA: one hundred% L/C at sightB: one hundred% T/TC: Western UnionD: Paypal
Application Automotive, rolling mill, mining, metallurgical, skateboard and so on.
Packagea. According to customer’s needs.b. Original bearing and great high quality packaging.c. Laser mark on the bearing.d. Bearing wrapped by vacuum packaging.e. The outer is color polybag + box + carton,industrial normal packaging.
Other Sequence and types of linear movement bearing:
LM linear bearing:
LM3UU,LM4UU,LM5UU,LM6UU,LM8UU,LM8S,LM10UU,LM12UU,LM13UU,LM16UU,
LM20UU,LM25UU,LM30UU,LM35UU,LM40UU,LM50UU,LM60UU, LM80UU
LM Open up Collection linear bearing:
LM10OPUU,LM12OPUU,LM13OPUU,LM16OPUU,LM20OPUU,LM25OPUU, LM3OOPU,LM35OPUU,LM40OPUU,LM50OPUU,LM60OPUU,LM80OPUU,LM100OPUU
LM Open up Series adjustable linear bearing:
LM6UUAJ,LM8UUAJ, LM10UUAJ,LM12UUAJ,LM13UUAJ,LM16UUAJ,LM20UUAJ,LM25UUAJ, LM3OOPU,LM35UUAJ,LM40UUAJ,LM50UUAJ,LM60UUAJ,LM80UUAJ,LM100UUAJ
LME linear bearing:
LME3UU,LME4UU,LME5UU,LME6UU,LME8UU,LME8S,LME10UU,LME12UU,LME13UU, LME16UU, China Manufacturing unit Bearing 1614DCTNTG18 Deep Groove Ball Bearing 84061TNPS18 88501 LME20UU,LME25UU,LME30UU,LME35UU,LME40UU,LME50UU,LME60UU
LMB linear bearing:
LMB4UU,LMB6UU,LMB8UU,LMB10UU,LMB12UU,LMB16UU,LMB24UU,LMB32UU
KH kind linear bearing: KH0622PP,KH0824PP,KH1026PP,KH1228PP,KH1630PP,KH2030PP,
KH2540PP,KH3050PP,KH4060PP,KH5070PP
Steel Cage Linear Bearing:
LM8GA,LM10GA,LM12GA,LM16GA,LM20GA,
LM25GA,LM30GA,LM35GA,LM40GA,LM50GA,LM60GA
SDM series Steel cage linear bearing(As very same as Ease SDM collection):
SDM16,SDM20,SDM25,SDM30,SDM35,SDM40,SDM50,SDM60,SDM80,SDM100,SDM120, SDM150
Flange Variety Linear Bearing:
LMF6UU,LMF8UU,LMF10UU,LMF12UU,LMF13UU,LMF16UU,LMF20UU,LMF25UU,LMF30UU,
LMF35UU,LMF40UU,LMF50UU,LMF60UU,LMF80UU,LMF100UU
LMK6UU,LMK8UU,LMK10UU,LMK12UU,LMK13UU,LMK16UU,LMK20UU,LMK25UU,LMK30UU,
LMK35UU,LMK40UU,LMK50UU,LMK60UU,LMK80UU,LMK100UU
LMT6UU,LMT8UU,LMT10UU,LMT12UU,LMT13UU,LMT16UU,LMT20UU,LMT25UU,LMT30UU.
Ball bearing box unit/Linear Slide Device:
1.Near Kind:
SC8UU,SC10UU,SC12UU,SC13UU, High Demand Triangular Tube Drive Shaft Flange Magnetic Yoke For PTO Shaft SC16UU,SC20UU,SC25UU,SC30UU,SC35UU,SC40UU, SC50UU,SC60UU (normal kind)
SC8WUU,SC10WUU,SC12WUU,SC13WUU,SC16WUU,SC20WUU,SC252UU,SC30WUU,SC35WUU, SC40WUU,SC50WUU (extended type) SC8VUU,SC10VUU,SC12VUU,SC13VUU,SC16VUU,SC20VUU,SC25VUU,SC30VUU,SC35VUU, SC40VUU,SC50VUU(Brief type)
two.Open up Variety:
SBR10UU,SBR12UU,SBR13UU,SBR16UU,SBR20UU,SBR25UU,SBR30UU,SBR35UU, SBR40UU,SBR50UU(Normal variety) SBR10LUU,SBR12LUU,SBR13LUU,SBR16LUU,SBR20LUU,SBR25LUU,SBR30LUU, SBR35LUU,SBR40LUU,SBR50LUU(Long kind) TBR16UU,TBR20UU,TBR25UU,TBR30UU
Shaft Assistance: SK/SHF SHAFT Help:SK8,SK10,SK12,SK13,SK16,SK20,SK25,SK30,SK35,SK40,SK50,SK60 SHF8,SHF10,SHF12,SHF13,SHF16,SHF20,SHF25,SHF30,SHF35,SHF40,SHF50,
Linear Bearing:
Linear bearing is a linear movement system, utilised for linear vacation and cylindrical axis.Due to coat point speak to ball bearing with bearing, metal ball roll with minimal friction resistance, so the linear bearing modest friction, and fairly steady, not more than bearing pace changes, and can receive high sensitivity, high precision of stationary linear movement.
The consumption of linear bearing also has its limitation. The most critical 1 is that the bearing has inadequate affect load capacity and poor bearing capacity.Linear bearing fast and easy to enhance computerized selection integrated.
Attributes:
Straight line bearing is utilized in conjunction with quenching straight line travel shaft.A system that moves in an infinite straight line.The load ball bearing and quenching transmission shaft are position get in touch with, so the allowable load is tiny, but when moving in a straight line, the friction resistance is small, the precision is large, and the movement is quickly.
Software:
Electronic equipmentFood machineryPackaging machineryMedical machineryPrinting machineryTextile machineryThe robotMachine toolsNc equipment toolAutomotive and electronic 3d coordinate measuring gear
FAQ

speak to us

Types of Ball Bearings

In their most basic form, Ball Bearings have one common feature – they are made of steel. The majority of these bearings are made of 52100 steel, which has one percent chromium and one percent carbon. The steel can be hardened by heat trea
tment. 440C stainless steel is used for rusting problems. A cage around the ball balls is traditionally made from thin steel. However, some bearings use molded plastic cages to save money and friction.
bearing

Single-row designs

Steel linear translation stages often use single-row designs for ball bearings. These types of bearings provide smooth linear travel and can withstand high loads. The material steel has a high modulus of elasticity and a high stiffness, as well as a lower thermal expansion than aluminum. For these reasons, steel is the material of choice for a ball bearing in a typical user environment. Single-row designs for ball bearings are also suitable for applications in humid or corrosive environments.
Single-row designs for ball bearings are available in a variety of sizes and are axially adjustable. They have a high radial capacity, but require relatively little space. Single-row deep groove ball bearings with snap rings are STN 02 4605 or R47, respectively. Bearings with snap rings are identified by a suffix such as NR. They may not have seals or shields installed.
These single-row angular contact ball bearings are capable of supporting axial and radial loads. In a two-raceway arrangement, the radial load on bearing A causes a radial load to act on bearing B. Both axial and radial forces are transmitted between single-row angular contact ball bearings, and the resulting internal force must be taken into account to calculate equivalent dynamic bearing loads P.
Single-row deep groove ball bearings are the most common type of ball bearings. These bearings are designed with only one row of rolling elements. The single-row design is simple and durable, which makes it ideal for high-speed applications. Single-row designs for ball bearings are also available in various bore sizes. They can also come in a variety of shapes and are non-separable. If you need a high-speed bearing, you may want to opt for a double-row design.
In addition to single-row designs for ball bearings, you can choose ceramic or steel ball bearings. Ceramic balls are considerably harder than steel balls, but they are not as hard as steel. Hence, ceramic bearings are stiffer than steel ball bearings, resulting in increased stress on the outer race groove and lower load capacity. This is a great benefit for those who need the bearings to be lightweight and strong.
The difference between single-row and double-row designs is in the way that the inner and outer ring are installed. A single-row design places the inner ring in an eccentric position relative to the outer ring. The two rings are in contact at one point, which causes a large gap in the bearing. The balls are then inserted through the gap. As a result, the balls are evenly distributed throughout the bearing, which forces the inner and outer rings to become concentric.
Deep-groove ball bearings are one of the most popular types of ball bearings. They are available in different designs, including snap-ring, seal and shield arrangements. The race diameter of a deep-groove ball bearing is close to the ball’s diameter. These types of bearings are suited for heavy loads, and their axial and radial support are excellent. Their main drawback is that the contact angle cannot be adjusted to accommodate a wide range of relative loads.
bearing

Ceramic hybrid ball bearings

Hybrid ball bearings with ceramic balls have numerous advantages. They feature improved kinematic behavior and require less lubrication. Consequently, they can reduce operating costs. Additionally, their low thermal expansion coefficient allows for smaller changes in contact angle and preload variations, and they can retain tolerances. Furthermore, ceramic hybrid ball bearings have significantly increased life spans compared to conventional steel-steel ball bearings, with up to 10 times the lifespan.
Although ceramic bearings can be used in automotive applications, many people believe that they’re a poor choice for bicycle hubs. They don’t reduce weight and only work well in high-rpm environments. As a result, many cyclists don’t even bother with ceramic-based bearings. However, both Paul Lew and Alan are of the opinion that ceramic bearings are best suited for industrial or medical equipment applications. Furthermore, Paul and Alan believe that they are ideal for high-altitude drone motors.
Another advantage of ceramic hybrid ball bearings is that they use less friction than conventional steel-based balls. They are also more durable, requiring less lubrication than steel-based bearings. Furthermore, the lower friction and rolling resistance associated with ceramic-based ball bearings means that they can last ten times longer than steel-based bearings. A ceramic-based hybrid ball bearing can be used for applications where speed and lubrication are critical.
Ceramic hybrid ball bearings feature both steel and silicon nitride balls. Silicon nitride balls have 50% more modulus of elasticity than steel balls and can improve accuracy and precision. Ceramic balls also have a smoother surface finish than steel balls, which reduces vibration and spindle deflection. These benefits result in increased speed and improved production quality. In addition to this, ceramic balls can also reduce the operating temperature, enhancing the work environment.
Hybrid bearings are a popular alternative to steel bearings. They have some benefits over traditional steel bearings, and are becoming a popular choice for engineered applications. Hybrid bearings are ideal for high speed machines. The material used to manufacture ceramic balls is a high-quality alloy, and is comparatively inexpensive. But you must understand that lubrication is still necessary for hybrid bearings. If you are not careful, you may end up wasting money.
These ball bearings can be used in many industries and applications, and they are widely compatible with most metals. The main advantage of hybrid ball bearings is that they are very durable. While steel balls tend to corrode and wear out, ceramic ball bearings can withstand these conditions while minimizing maintenance and replacement costs. The benefits of hybrid ball bearings are clear. So, consider switching to these newer types of ball bearings.
bearing

Self-aligning ball bearings

Self-aligning ball bearings are a good choice for many applications. They are a great alternative to traditional ball bearings, and they are ideal for rotating applications in which the shaft must move in several directions. They are also ideal for use in rotating parts where a tight tolerance is necessary. You can choose between two types: plain and flex shaft. Read on to find out which one will suit your needs.
Self-aligning ball bearings are designed with a higher axial load carrying capacity than single-row radial deep groove ball bearings. The amount of axial load carrying capacity is dependent upon the pressure angle. These bearings have a hollow raceway in the outer ring that allows the inner ring to pivot without friction. They are often used for high-speed applications. Because of their design, they are highly accurate.
Self-aligning ball bearings are radial bearings that feature two rows of balls in a spherical outer ring. They also feature two deep uninterrupted raceway grooves in the inner ring. Their unique features make them an excellent choice for applications where shaft deflection is a significant factor. Despite their small size, they have a high level of precision and can withstand heavy loads.
Self-aligning ball bearings can compensate for misalignment in shaft applications. The inner ring and ball assembly are positioned inside an outer ring containing a curved raceway. This spherical design allows the balls and cage to deflect and re-align around the bearing center. These bearings are also ideal for applications where shaft deflection is significant, such as in simple woodworking machinery.
Another type of self-aligning ball bearing uses a common concave outer race. Both balls and outer races automatically compensate for angular misalignment caused by machining, assembly, and deflections. Compared to spherical rollers, they have lower frictional losses than their spherical counterparts. Self-alignment ball bearings also have lower vibration levels compared to other types of bearings.
Self-aligning ball bearings operate in misaligned applications because their spherical outer raceway can accommodate misalignment. This design allows them to work in applications where shaft deflection or housing deformation is common. They are therefore more suitable for low to medium-sized loads. The only real drawback to self-aligning ball bearings is their price. If you need to purchase a self-aligning ball bearing for your next project, you can expect to pay around $1500.

China Japan LMB20 Linear Motion Bush Ball Bearing LMB20UU     deep groove ball bearingChina Japan LMB20 Linear Motion Bush Ball Bearing LMB20UU     deep groove ball bearing
editor by czh 2023-02-19

China Lm40-Uu Linear Bearing Linear Ball Bearing Linear Motion Bearing with Hot selling

Product Description

Product Description:
Linear bearings are bearing elements for translation type motion. As in the case of rotary bearings, a distinction is drawn as to whether the forces occurring are transmitted by means of rolling or sliding elements. Each linear design has particular characteristics that make it especially suitable for particular bearing arrangements. 
1. enable high precision linear motion on round shafts
2. sustain heavy loads with low noise and high stiffness
3. perform under almost any environmental conditions and load capacities to satisfy a wide range applications

  More products show:

Company Introduction:
HangZhou CZPT Automation Technology Co.LTD is located in HangZhou city,ZHangZhoug province,China.The company specializes in the production of ball screw,screw support,nut seat,linear CZPT rail,cylindrical CZPT rail,biaxial starguide rail and so on.The company’s products are widely used in automantion eqiupment,packaging machinery,printing machinery,food machinert,instrumentation eq uipment,woodworking machinery,automobile,high-speed iron,carving machines and other industrial machinery industries.
The company has rich experience in the design and manufacture of automatic semi-automatic machinery parts,adcanced eqiupment and production trchnology,and has anumber of technical r&d backbone engaged in mechanical design,manufacturing,testing and after-sales service for many years.Since the establishment of the company,the products have been produced in strict accordance with international standards.Every post of producyion,sales and after-sales service has a superb technical team as the bancking,and every link is understrict and meticulous quality control to ensure that the sales are all high-quality products.The staff of the company always remember that quality is the life of the company,because we  are professional because of our focus,we have been working hard.
The company is committed to creating maximum calue for customers,and is committed to prociding customers with high-quality,professional and satisfactory bearing products.Welcome friends from all walks of life to cisit,guide and business negotiations,we are willing to work with you hand in hand!

 

Feature: Long Operating Life
Function: Ordinary
Flange Shape: None
Shape: Straight
Series: LM
Material: Bearing Steel

###

Samples:
US$ 3.99/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:
Feature: Long Operating Life
Function: Ordinary
Flange Shape: None
Shape: Straight
Series: LM
Material: Bearing Steel

###

Samples:
US$ 3.99/Piece
1 Piece(Min.Order)

|
Request Sample

###

Customization:

How to Replace a Bearing

If you want to select a bearing for a specific application, you should know a few basics. This article will give you an overview of ball, angular contact, and sliding-contact bearings. You can choose a bearing according to the application based on the characteristics of its material and preload. If you are not sure how to choose a bearing, try experimenting with it. The next step is to understand the Z-axis, which is the axes along which the bearing moves.

Z axis

When it comes to replacing your Z axis bearing, there are several things you must know. First, you need to make sure that the bearings are seated correctly. Then, you should check the tension and rotation of each one. To ensure that both bearings are equally tensioned, you should flex the Core to the desired angle. This will keep the Z axis perpendicular to the work surface. To do this, first remove the Z axis bearing from its housing and insert it into the Z axis motor plate. Next, insert the flanged bearing into the Z axis motor plate and secure it with two M5x8mm button head cap screws.
Make sure that the bearing plate and the Z Coupler part are flush and have equal spacing. The spacing between the two parts is important, as too much spacing will cause the leadscrew to become tight. The screws should be very loose, with the exception of the ones that engage the nylocks. After installing the bearing, the next step is to start the Z axis. Once this is done, you’ll be able to move it around with a stepper.

Angular contact

bearing
Ball bearings are made with angular contacts that result in an angle between the bearing’s races. While the axial load moves in one direction through the bearing, the radial load follows a curved path, tending to separate the races axially. In order to minimize this frictional effect, angular contact bearings are designed with the same contact angle on the inner and outer races. The contact angle must be chosen to match the relative proportions of the axial and radial loads. Generally, a larger contact angle supports a higher axial load, while reducing radial load.
Ball bearings are the most common type of angular contact bearings. Angular contact ball bearings are used in many applications, but their primary purpose is in the spindle of a machine tool. These bearings are suitable for high-speed, precision rotation. Their radial load capacity is proportional to the angular contact angle, so larger contact angles tend to enlarge with speed. Angular contact ball bearings are available in single and double-row configurations.
Angular contact ball bearings are a great choice for applications that involve axial loads and complex shapes. These bearings have raceways on the inner and outer rings and mutual displacement along the axial axis. Their axial load bearing capacity increases as the contact Angle a rises. Angular contact ball bearings can withstand loads up to five times their initial weight! For those who are new to bearings, there are many resources online dedicated to the subject.
Despite their complexity, angular contact ball bearings are highly versatile and can be used in a wide range of applications. Their angular contact enables them to withstand moderate radial and thrust loads. Unlike some other bearings, angular contact ball bearings can be positioned in tandem to reduce friction. They also feature a preload mechanism that removes excess play while the bearing is in use.
Angular contact ball bearings are made with different lubricants and cage materials. Standard cages for angular contact ball bearings correspond to Table 1. Some are machined synthetic resins while others are molded polyamide. These cage materials are used to further enhance the bearing’s axial load capacity. Further, angular contact ball bearings can withstand high speeds and radial loads. Compared to radial contact ball bearings, angular contact ball bearings offer the greatest flexibility.

Ball bearings

bearing
Ball bearings are circular structures with two separate rings. The smaller ring is mounted on a shaft. The inner ring has a groove on the outer diameter that acts as a path for the balls. Both the inner and outer ring surfaces are finished with very high precision and tolerance. The outer ring is the circular structure with the rolling elements. These elements can take many forms. The inner and outer races are generally made of steel or ceramic.
Silicon nitride ceramic balls have good corrosion resistance and lightweight, but are more expensive than aluminum oxide balls. They also exhibit an insulating effect and are self-lubricating. Silicon nitride is also suitable for high-temperature environments. However, this type of material has the disadvantage of wearing out rapidly and is prone to cracking and shattering, as is the case with bearing steel and glass. It’s also less resistant to heat than aluminum oxide, so it’s best to buy aluminum nitride or ceramic ball bearings for applications that are subjected to extremely high temperatures.
Another type of ball bearings is the thrust bearing. It has a special design that accommodates forces in both axial and radial directions. It is also called a bidirectional bearing because its races are side-by-side. Axial ball bearings use a side-by-side design, and axial balls are used when the loads are transmitted through the wheel. However, they have poor axial support and are prone to separating during heavy radial loads.
The basic idea behind ball bearings is to reduce friction. By reducing friction, you’ll be able to transfer more energy, have less erosion, and improve the life of your machine. With today’s advances in technology, ball bearings can perform better than ever before. From iron to steel to plastics, the materials used in bearings have improved dramatically. Bearings may also incorporate an electromagnetic field. So, it’s best to select the right one for your machine.
The life expectancy of ball bearings depends on many factors, including the operating speed, lubrication, and temperature. A single million-rpm ball bearing can handle between one and five million rotations. As long as its surface contact area is as small as possible, it’s likely to be serviceable for at least one million rotations. However, the average lifespan of ball bearings depends on the application and operating conditions. Fortunately, most bearings can handle a million or more rotations before they start showing signs of fatigue.

Sliding-contact bearings

bearing
The basic principle behind sliding-contact bearings is that two surfaces move in contact with one another. This type of bearing works best in situations where the surfaces are made of dissimilar materials. For instance, a steel shaft shouldn’t run in a bronze-lined bore, or vice versa. Instead, one element should be harder than the other, since wear would concentrate in that area. In addition, abrasive particles tend to force themselves into the softer surface, causing a groove to wear in that part.
Sliding-contact bearings have low coefficients of friction and are commonly used in low-speed applications. Unlike ball and roller bearings, sliding contact bearings have to be lubricated on both sides of the contacting surfaces to minimize wear and tear. Sliding-contact bearings generally are made of ceramics, brass, and polymers. Because of their lower friction, they are less accurate than rolling-element bearings.
Sliding-contact bearings are also known as plain or sleeve bearings. They have a sliding motion between their two surfaces, which is reduced by lubrication. This type of bearing is often used in rotary applications and as guide mechanisms. In addition to providing sliding action, sliding-contact bearings are self-lubricating and have high load-carrying capacities. They are typically available in two different types: plain bearings and thrust bearings.
Sliding-contact linear bearing systems consist of a moving structure (called the carriage or slide) and the surfaces on which the two elements slide. The surfaces on which the bearing and journal move are called rails, ways, or guides. A bore hole is a complex geometry, and a minimum oil film thickness h0 is usually used at the line of centers. It is possible to have a sliding-contact bearing in a pillow block.
Because these bearings are porous, they can absorb 15 to 30% of the lubrication oil. This material is commonly used in automobile and machine tools. Many non-metallic materials are used as bearings. One example is rubber, which offers excellent shock absorbency and embeddability. While rubber has poor strength and thermal conductivity, it is commonly used in deep-well pumps and centrifugal pumps. This material has high impact strength, but is not as rigid as steel.

China Lm40-Uu Linear Bearing Linear Ball Bearing Linear Motion Bearing     with Hot sellingChina Lm40-Uu Linear Bearing Linear Ball Bearing Linear Motion Bearing     with Hot selling
editor by czh 2022-12-08